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 Visual Simultaneous Localization and Mapping known as V-SLAM, is an essential task for 
autonomous vehicles. It can be carried out using several sensors, in particular with on 
board cameras. To locate a vehicle, SLAM algorithms are based on two main tasks. The 
first task (front-end kernel) is intended to process images in order to provide features 
(called also landmarks or primitives) of the perceived environment. The second task (back-
end kernel) is intended for localization and environment reconstruction. 
This work focuses on the front-end task which uses extractors (detectors and descriptors) 
in a stereo-vision system. Several feature detectors and descriptors exist in the state of the 
art. The aim of this paper is to evaluate the possible combinations of detectors and 
descriptors to achieve a precise localization while considering the processing times. The 
study is extended to bio-inspired extractors. The evaluation is achieved with SLAM 
algorithms over well-known indoor and outdoor datasets. Experimental results highlight 
the performance of bio-inspired extractors and their potential integration in designing 
vision systems for real-time SLAM applications. 
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1. Introduction 

Simultaneous localization and mapping (SLAM) [1] are a 
complex task aiming to reconstruct a map during a vehicle motion 
in parallel while localizing its position. This problem can be solved 
by using complicated algorithms, where many threads should be 
executed simultaneously, since the need is to recognize at the same 
time the vehicle pose and process previously detected landmarks 
for pose estimation and mapping. It is known that in ordinary 
circumstances a map cannot be achieved without knowing the 
precise position, while to know it, a map with landmarks is needed.  
The pose recognition is done by using feature extractors, that are a 
combination between feature detectors and descriptors.  A SLAM 
algorithm can use input data issued from one or many sensors, to 
estimate the robot position. However, for a higher accuracy, a 
fusion of different sensors data is required.  
Vision SLAM systems use a camera to detect a maximum of key 
Points (KP). Some software approaches are then developed to 
improve the quality of detected features, by enhancing description 
and detection algorithms. Both these tasks are the main ingredient 
for back-end kernels (localization, mapping and building 
environment) of any real-time vision SLAM application. 

 Despite some weakness like sensitivity to light, vision SLAM 
systems need a powerful architecture for image processing.  This 
could be improved based on a hardware software co-design. 

Back-end and front-end algorithms, both dependent as shown 
in figure 1, are continuously object of improvement and will keep 
being, as well as all other researches related to the embeddability 
on heterogeneous architectures and parallel implementation. The 
works in [2, 3] are among many similar studies, an example where 
the SMG-SLAM and EKF-SLAM, were accelerated on a field-
programmable gate array (FPGA). 

Most of feature extractors are mainly based on existing 
algorithm but are solving their drawbacks or improving their 
weaknesses, to be more robust against environment changes. 

There are many ways to determine a key-point, also called a 
landmark in image processing depending on its type, since it could 
be a corner, a blob, an edge or a ridge. However, a recent survey 
[4] related to advances on feature extraction and description 
algorithms, show that the most used method is the corner detection, 
due to its algorithmic moderated complexity and the improved 
calculation adopted formulas, which has an impact on the number 
of memory access and CPU usage. Corners, called interest points, 
can be obtained by intersection of at least two edges. 
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The corner detector is based on the edge detector. It is 
represented by a set of pixels that have rapid change in direction. 
Each of these pixels have at least two dominants and various 
directions of the corresponding point in a local area.  

The quality of a corner detector can be evaluated by applying 
above criterions on the same corner, for multiple images and under 
different environment effects such as light changes, rotation, 
translation, and image resolution. 

 

 

 

Figure 1: Front-End / Back-end main sequence for V-SLAM 

 As per [5] Harris represented by equation (1), was evaluated as 
the most stable, with the lower computational complexity 
compared to other corner detectors, such as Shi-Tomasi [6] and 
Forsner [7]. 

 𝑓𝑓(∆𝑥𝑥,∆𝑦𝑦) ≈ (∆𝑥𝑥,∆𝑦𝑦) 𝑀𝑀�∆𝑥𝑥∆𝑦𝑦� (1) 

Where, in a given 2-dimensional grayscale image I, (𝑥𝑥,𝑦𝑦)𝜖𝜖 𝑤𝑤 
(window) are the image patch, (∆𝑥𝑥,∆𝑦𝑦) is the shift and M is a 
Matrix structure tensor represented by: 

 𝑀𝑀 = ∑ �𝐼𝐼𝑥𝑥𝐼𝐼𝑥𝑥 𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦
𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦 𝐼𝐼𝑦𝑦𝐼𝐼𝑦𝑦�(𝑥𝑥,𝑦𝑦)𝜖𝜖𝜖𝜖                         

 =  �
∑ 𝐼𝐼𝑥𝑥𝐼𝐼𝑥𝑥(𝑥𝑥,𝑦𝑦)𝜖𝜖𝜖𝜖 ∑ 𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦(𝑥𝑥,𝑦𝑦)𝜖𝜖𝜖𝜖

∑ 𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦(𝑥𝑥,𝑦𝑦)𝜖𝜖𝜖𝜖 ∑ 𝐼𝐼𝑦𝑦𝐼𝐼𝑦𝑦(𝑥𝑥,𝑦𝑦)𝜖𝜖𝜖𝜖
�  (2) 

       Hence based on [5], for lower threshold values Harris detects 
many features together with noisy data from the image, which is 
considered as a weakness. Since Harris cannot set multiple 
threshold values for each image feature detection, it needs to be 
enhanced.  

To solve such issue an accelerated segment test model, 
mathematically simple, was developed and proved with better 
performance, since it can determine if the interest point is a corner 

or not, only by evaluating the point neighborhood. Based on this 
concept some very known detector was developed, such as Feature 
Accelerated Segment Test (FAST) [8], which is also considered as 
an enhancement of SUSAN [9] and Harris corner detectors.  

     There are other different approaches for corner detection, that 
can detect interest points using a genetic programming for 
automatic image operator synthesis, like the one developed by 
Trujillo and Olague [10] in 2011. This method can be competitive, 
but it is more used for object recognition and need to be trained 
based on a bag of features.  

     To perform the desired task in an optimal way, the 
representation of the complete initial image data must be reduced 
by eliminating redundant features. So, a descriptor is applied once 
the feature detection is done, to provide complementary attributes 
such as gradient, magnitude and orientation. 

       Several descriptors like SIFT, SURF, BRIEF, ORB or BRISK 
has been successfully applied for tracking and object detection 
tasks, but most of pervious evaluation works were related to the 
computational complexity of algorithms.  

 In this work, our contribution is a study of detectors and 
descriptors to select the suitable extractor combination dedicated 
to the V-SLAM. The study considers constraints of processing 
times and precision for autonomous vehicles. It is extended to bio-
inspired extractors and their integration into a back-end V-SLAM 
system.  
 
 The following section is related to the state-of-the-art and the 
essential concepts, to highlight and explain the reasons behind 
each selection and present also advantages and drawbacks of the 
chosen feature descriptors and detectors. Then, the evaluation 
methodology will be presented in section 3. Section 4 shows the 
results related to the processing times and precision of the 
evaluated extractors. It presents also front-end experimental tests 
which lead us to select an extractor for a full SLAM evaluation 
(back-end evaluation). The last section gives a general holistic 
view point and a conclusion. 

2. Related Work 

2.1. Feature detectors 

FAST: based on AST (Accelerated Segment Test) and stands 
for Feature Accelerated Segment Test, is a corner detector that 
exceeds the other detectors in both computational performance and 
repeatability as per [11]. This method consists on the examination 
of the intensity for a given central pixel p in a radius r circle 
following a mathematical representation, where the intensity value 
Ip of the corresponding pixel p and a threshold t are used in three 
intervals:  

 𝑆𝑆𝑝𝑝→𝑥𝑥 = �
   𝑑𝑑,                    𝐼𝐼𝑝𝑝→𝑥𝑥 ≤ 𝐼𝐼𝑝𝑝−𝑡𝑡                                   ( 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)   
𝑠𝑠,     𝐼𝐼𝑝𝑝−𝑡𝑡 < 𝐼𝐼𝑝𝑝→𝑥𝑥 < 𝐼𝐼𝑝𝑝+𝑡𝑡                                    ( 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑)

  𝑏𝑏,               𝐼𝐼𝑝𝑝+𝑡𝑡 ≤ 𝐼𝐼𝑝𝑝→𝑥𝑥                                       (𝑏𝑏𝑑𝑑𝑠𝑠𝑏𝑏ℎ𝑡𝑡𝑑𝑑𝑑𝑑)
 (3) 

where, 𝑆𝑆𝑝𝑝→𝑥𝑥 is the state,  𝐼𝐼𝑝𝑝→𝑥𝑥 is the intensity of the pixel 𝑥𝑥 and t 
is a threshold. 
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There is a way to make this process faster by evaluating n 
successive pixels from the circle. Based on the brightness and 
darkness of these pixels, the evaluated pixel can be identified as a 
feature or not. 

Authors in [11] has optimized the algorithm to achieve higher 
computational efficiency with improved processing speed, by 
defining the order in which the test is done and applying a non-
maximum suppression (NMS), to pixels that have successfully 
verified the segment test. The idea is mathematically represented 
by: 

 𝑉𝑉 = 𝑠𝑠𝑑𝑑𝑥𝑥 �𝛴𝛴
(𝑝𝑝𝑠𝑠𝑥𝑥𝑑𝑑𝑠𝑠 𝑣𝑣𝑑𝑑𝑠𝑠𝑣𝑣𝑑𝑑𝑠𝑠 − 𝑝𝑝) 𝑠𝑠𝑓𝑓 (𝑣𝑣𝑑𝑑𝑠𝑠𝑣𝑣𝑑𝑑 − 𝑝𝑝) > 𝑡𝑡

𝛴𝛴(𝑝𝑝 − 𝑝𝑝𝑠𝑠𝑥𝑥𝑑𝑑𝑠𝑠 𝑣𝑣𝑑𝑑𝑠𝑠𝑣𝑣𝑑𝑑𝑠𝑠) 𝑠𝑠𝑓𝑓 (𝑝𝑝 − 𝑣𝑣𝑑𝑑𝑠𝑠𝑣𝑣𝑑𝑑) > 𝑡𝑡  (4) 

In this equation, p refers the central pixel, t is a threshold and "pixel 
values" correspond to the N contiguous pixels in the corresponding 
circle. 

 The AST processing speed depends mainly on the pixel from 
which the evaluation is starting first. Therefore, the decision tree 
can be computed based on the distribution of the learnt set of the 
corner configuration for a given environment.  

AGAST: Adaptive and Generic Accelerated Segment Test, is 
a corner detector developed by Elmar Mair et al. [12] where a 
binary decision tree is computed. This method is common and does 
not require any adaptation to new environments. However, it is 
more memory consuming due to the number of memory access to 
weight the various pixels. The decision tree is optimal for a given 
probability of similar pixels in the AST mask.  

Also, the corner detector is automatically adapted to the 
environment by combining two trees, to make, with only one-pixel 
delay, the optimal decision tree for the image region. Hence, it 
results in a corner detector that does not need a training task, while 
maintaining the same corner repeatability and response as FAST.  

By varying the nucleus (Ps), the decision tree can be balanced. 
The system is then represented as follow: 

𝑆𝑆𝑛𝑛→𝑥𝑥 =  

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑑𝑑,              𝐼𝐼𝑛𝑛→𝑥𝑥 <  𝐼𝐼𝑛𝑛−𝑡𝑡                                     ( 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)  
�̅�𝑑,           𝐼𝐼𝑛𝑛→𝑥𝑥 ≮  𝐼𝐼𝑛𝑛−𝑡𝑡 ∧ 𝑆𝑆𝑛𝑛→𝑥𝑥′ = 𝑣𝑣           (𝑛𝑛𝑛𝑛𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
𝑠𝑠,           𝐼𝐼𝑛𝑛→𝑥𝑥 ≮  𝐼𝐼𝑛𝑛−𝑡𝑡 ∧ 𝑆𝑆𝑛𝑛→𝑥𝑥′ = 𝑏𝑏�                 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑)
�̅�𝑠,           𝐼𝐼𝑛𝑛→𝑥𝑥 ≯  𝐼𝐼𝑛𝑛+𝑡𝑡 ∧  𝑆𝑆𝑛𝑛→𝑥𝑥′ = �̅�𝑑                 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑)
𝑏𝑏�,        𝐼𝐼𝑛𝑛→𝑥𝑥 ≯  𝐼𝐼𝑛𝑛+𝑡𝑡 ∧ 𝑆𝑆𝑛𝑛→𝑥𝑥′ = 𝑏𝑏 �           (𝑛𝑛𝑛𝑛𝑡𝑡𝑏𝑏𝑑𝑑𝑠𝑠𝑏𝑏ℎ𝑡𝑡𝑑𝑑𝑑𝑑)
𝑏𝑏,         𝐼𝐼𝑛𝑛→𝑥𝑥 > 𝐼𝐼𝑛𝑛+𝑡𝑡                                          (𝑏𝑏𝑑𝑑𝑠𝑠𝑏𝑏ℎ𝑡𝑡𝑑𝑑𝑑𝑑)

  (5) 

where, 𝑆𝑆𝑛𝑛→𝑥𝑥′  is the previous state, I is the pixel brightness and 𝑣𝑣 
refers to an unknown state.  

Therefore, when the environment switches at consecutive 
pixels from homogenous to structured, AGAST can be less 
efficient than FAST. However, it is not possible practically due to 
the mirroring effect of dissimilar pixels, also because a random 
brightness distribution does not exist on a natural image. 

SURF: Stands for Speed Up robust Feature, it is inspired and 
developed based on SIFT [13]. The main motivation of this feature 
detector and descriptor is to overcome SIFT’s low processing time 
and computational complexity. SURF [14] has been reported to be 

up to a few times faster than SIFT without compromising the 
performance.  

For a given pixel, SURF calculate first the Haar-wavelet 
responses in x and y-direction, around the key-point in a circular 
neighborhood of radius 6. Integral images are also used on big 
scales wavelets for fast filtering. The second step in the process is 
to calculate the main orientation of the feature descriptor, by 
making the sum of vertical and horizontal wavelet responses in a 
scanning area, then changing the scanning orientation by adding 
π/3, and re-calculating until to find the largest sum value. 

STAR: It is distinguished from SIFT and SURF which find 
extrema at sub-sampled pixels that consequently reduces accuracy 
of feature localization at larger scales. This feature detector is a 
derivative from CenSurE (Center Surround Extrema) feature 
detector [15]. It was integrated to the well-known Open source 
Computer Vision library.  

Aiming to create a multiscale detector with full spatial 
resolution, this detector uses a bi-level approximation of the 
Laplacian of Gaussians (LoG) filter. So instead of the simple 
circular shape, the mask is represented by a circle with 2 
overlapping squares: 1 upright and 1 45-degree rotated, resulting 
in a polygon with thick borders, to be invariant to rotations and to 
enable the use of integral images for efficient computation (see 
figure 2). This configuration is computationally better compared to 
the other scale-space detectors and presents real-time 
implementation possibilities. 

The masks shape used in feature detection for each method is 
given by Figure 2. 

 

ORB: Stands for Oriented FAST and Rotated BRIEF (Binary 
Robust Binary Robust Independent Elementary Features) [16]. 
The ORB detector is developed based on FAST to find key-point 
then applies Harris corner detector measuring method to give the 
top N points among them. But since FAST does not compute the 
orientation, the authors in [16] came up with enhancing 
modifications.  

The ORB detector creates a multiscale image pyramid, with 
versions of image at different resolutions, where each level in the 
pyramid contains a subsampled version than the previous level. 
Once this process is finished, FAST detector is used to detect key-
points at each level, and therefore ORB is partial scale invariant.  

http://www.astesj.com/
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2.2. Features descriptors 
BRIEF: Stands for Binary Robust Independent Elementary 

Features. This feature descriptor as per [17] uses a binary 
subsequent matching, with Hamming distance method to compute 
the descriptors similarities. This algorithm is much faster and 
computationally efficient. 

Due to the high sensitivity to noise, BRIEF performs a 
smoothing to the image before applying the actual descriptor, 
using a simple averaging filter.  

The value of each contributing bit to the descriptor, is given 
by the comparison of intensity values of two points inside an image 
segment centered on the currently described feature. The value of 
this bit is equal to 1 if the first point intensity of this pair is higher 
than the second point intensity value, otherwise it is equal to 0.  

A few sampling strategies were tested by the authors to select 
the point pairs, show that sampling according to the Gaussian 
distribution centered on the described feature point, results in best 
performances.  

For BRIEF, the initial smoothing is done with a 9x9 pixels 
rectangular averaging filter, the image patch is a 48x48, and the 
proposed descriptor is 512-bit long. The size of the window can be 
modified to be fitted to the application. 

ORB: The Oriented FAST and Rotated BRIEF descriptor, 
uses a modified version of BRIEF (Binary Robust Binary Robust 
Independent Elementary Features).  

Since Standard BRIEF descriptor performs weakly on 
rotation, ORB drives BRIEF depending on the orientation of key-
points (KP’s). The algorithm constructs a lookup table of pre-
computed BRIEF patterns, to get a rotated version Sθ, where the 
angle is discretized by an incrementation of 12° degrees. then use 
the correct set of points Sθ to compute its descriptor.  

        BRISK: The Binary Robust Invariant Scalable Key-point 
(BRISK) [18], is a key point detector and descriptor inspired by 
AGAST [12] and BRIEF [17]. It uses AGAST for detection, which 
is an upgrading of FAST in term of processing time while 
preserving the similar detection performance.  
      To achieve scale invariance, the key-point is detected using a 
non-maxima suppression and interpolation across all scales space 
pyramid. To describe the features, authors have used symmetric 
patterns instead of using learned or random patterns.  

    For long-distance and to determine orientation, several sample 
point comparisons were used. The relative difference in intensity 
of the displacement vector is weighted and stored. These vectors 
are weighted. The computed average is used to find the major 
gradient direction of the patch. 
         FREAK: Fast Retina Key point [19], inspired from the 
biological human retina. The detection concept is based on 
summing the estimated local gradients over selected point pairs to 
provid the feature orientation.  
       To allow applying coarser discretization of rotation, a specific 
biologically inspired point sampling pattern is used which also 
results on saving memory space.  

      To reject false matches and accelerate the computation time, 
the feature description used is BREIF-based binary string. This 
allows a sampling pattern approach by comparing the most 
distinctive characteristics feature neighborhood to the point pairs 
carrying the information.  

HOOFR: Hessian ORB-Overlapped FREAK [20] is a FREAK 
descriptor-based method combined with the ORB detector, with 
enhancements on the detection algorithm to speed up the process, 
improve memory allocation and reliability, the matching process 
timing is then reduced because the descriptor size is 256 instead of 
512 compared to FREAK. HOOFR has three steps:  

1- The first step consists on extracting key points from training 
data and building the description:  a matrix M is created using 
all possible pairs where each key-point has its own descriptor. 
The number of key-points is equivalent to rows and the size 
of descriptor is equivalent to the number of columns. 

2- The second step aims to define the variance value of the binary 
distribution, by computing the average for each column 
limited between 0 and 1. A mean value of 0.5 indicates the 
maximum variance desired to have a discriminant feature. 

3- Finally, the third step consist on processing all columns to 
maintain only 256 columns that have the greatest variances. 

ZEON: Defined by H. Angrish [21] as a new technique 
combining features of, SURF [14], BRISK [17] and FREAK [19], 
to overcome each method drawback. The main purpose of this 
improvement is to increase the extraction robustness and accuracy. 
This new proposed technique is intended to use features of SURF 
and BRISK as well as the detection capabilities of FREAK as a 
first step. This will provide a certain edge and will not add massive 
time strains to the new method timing.  

3. Evaluation Methodology 

First, we will develop and set many combinations of different 
feature detectors and descriptors. All extractors will be evaluated 
in terms of processing time and accuracy for different set of images 
of well-known outdoor dataset, using different lighting condition 
and at different camera rates. Results from the first step will be 
analyzed to select only the best candidate that could be used in a 
real time SLAM system for automotive application. For this 
reason, we will consider the first three high score combinations 
taking into consideration the compromise between processing time 
and accuracy. At the end, we will make a full implementation of 
the selected extractors with a V-SLAM algorithm, to be able to 
evaluate the behavior of each extractor and define the most robust 
solution versus back-end constraints related to rotation, filtering, 
type of landmarks, lighting, sensor noise or ground truth. The 
evaluation methodology will also take indoor scenes. 
4. Experimental Results  

4.1. Front-End Evaluation 

The adopted method for front-end process evaluation, is using 
a calibrated monocular camera to get image input, focusing on the 
number of detected features, the processing time of each extractor 
combination and the matching time.  

http://www.astesj.com/
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To make an objective comparison, the same image is used 
where the calibration settings described in Table 1 are similar for 
each set of images given by KITTI benchmark [22].  

The hardware configuration shown in Table 1. 
Table 1: Hardware and software configuration  

CPU: Intel i5 core ™ @ 2.60 GHZ  
GPU : NVIDIA GeForce GTX 1060 Max-Q 6GiB  
RAM: 12 GB 

 

Scale factor 1.6 
Initial threshold 20 
Scale level 8 
Min threshold 7 
Max Feature 1000 

 
The number of features is set to a fix value number to limit the 

image maximum interest points that can be found by using a 
descriptor, 1000 is the highest number found during experiment, 
so it is set to be a reference value to make the comparison and to 
calculate the detector accuracy. All values are given after 
calculating the means. Figure 3 gives examples of proceeded 
images with their respective resolutions. 

 
 

(A) Street: Image resolution: 1392 x 512 pixels. Labels: 1 Cars, 0 Vans, 0 
Trucks, 0 Pedestrians, 0 Sitters, 0 Cyclists, 0 Trams, 0 Misc. 

 

 
 

(B) Cars: Image resolution: 1392 x 512 pixels. Labels: 5 Cars, 2 Vans, 1 Trucks, 
0 Pedestrians, 0 Sitters, 0 Cyclists, 0 Trams, 0 Misc. 

 
Figure 3: Outdoor images of KITTI dataset [22] used for evaluation.  

Some extractors can be used, in the same time, as detectors and 
descriptors like ORB and SURF. Therefore, the description task is 
done in parallel with the detection task. From the other hand and 
since it is expected that the extractors will not have the same 
number of detected features, the processing time will be higher for 
the ones with high number of detections. So, the given value will 
consider the total processing time divided by the number of 
detected features as presented in Table 2 and Table 3. 

Table 2: Processing time evaluation for different combinations of detectors-
descriptors vs number of detected features using the image from figure 3 (A). 

   Image (A): Street 

Descriptor Detector 
Number of 

detected 
features 

Total detection and 
description processing 
time per feature (ms) 

FREAK FAST 956 0.046 

STAR 643 0.12 
ORB 213 0.291 
SURF 684 0.409 

AGAST 950 1.065 

ORB 

FAST 946 0.037 
STAR 660 0.106 
SURF 967 0.278 
ORB 500 0.036 

AGAST 939 1.399 

BRISK 

FAST 988 0.041 
STAR 660 0.126 
ORB 402 0.239 
SURF 896 0.355 

AGAST 980 1.357 

BRIEF 

FAST 951 0.035 
STAR 660 0.12 
ORB 500 0.144 
SURF 973 0.197 

AGAST 944 1.292 

ZEON 

FAST 3353 0.018 
STAR 654 0.124 
ORB 371 0.396 
SURF 971 0.346 

AGAST 3382 0.374 

SURF 

FAST 8115 0.049 
STAR 660 0.127 
ORB 500 0.57 
SURF 1334 0.31 

AGAST 8217 0.177 

Table 3: Processing time evaluation for different combinations of detectors- 
descriptors vs number of detected features using the image from figure 3 (B) 

 Image (B): Cars 

Descriptor Detector  
Number of 

detected 
features 

Total detection and 
description processing 
time per feature (ms) 

FREAK 

FAST 960 0.05 
STAR 741 0.09 
ORB 206 0.30 
SURF 691 0.47 

AGAST 957 1.39 

ORB 

FAST 953 0.05 
STAR 760 0.10 
SURF 969 0.25 
ORB 500 0.19 

AGAST 947 1.45 

BRISK 

FAST 988 0.07 
STAR 760 0.11 
ORB 414 0.21 
SURF 897 0.28 

AGAST 984 1.49 

BRIEF 

FAST 956 0.04 
STAR 760 0.09 
ORB 500 0.15 
SURF 973 0.25 

AGAST 952 1.57 
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ZEON 

FAST 982 0.06 
STAR 753 0.11 
ORB 373 0.37 
SURF 862 0.38 

AGAST 980 1.37 

SURF 

FAST 1000 0.06 
STAR 760 0.13 
ORB 500 0.55 

AGAST 1000 0.40 

As shown in the above tables, it is clear that FAST as feature 
detector, is the most improved among all evaluated detectors 
because it provides the lower processing time with the maximum 
points of interest. Nonetheless, the total time is evaluated as the 
mean of the sum of all processing times needed for a feature 
detection and description for several iterations. Having a high 
number of detected features necessarily leads to a higher 
processing time needed for matching process. To evaluate this 
effect, the matching time and accuracy are then calculated 
according to the following formula: 

 %𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣𝑑𝑑𝑑𝑑𝐴𝐴𝑦𝑦 = 𝛴𝛴(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑇𝑇𝑛𝑛𝑛𝑛𝑡𝑡𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃) 
𝛴𝛴( 𝑇𝑇𝑃𝑃𝑡𝑡𝑛𝑛𝑇𝑇 𝑐𝑐𝑛𝑛𝑃𝑃𝑇𝑇𝑃𝑃)

∗ 100 (6) 

Table 4 gives the time spent per feature to have the corresponding 
match, based on image (B) from figure 3. 

Table 4: Matching time using Brut force for SURF, and Hamming distance for 
the remaining descriptors  

Descriptor Detector  
Number of 
matched 
Features 

Matching 
time (ms) % Acc 

FREAK FAST 869 0.139 90.52% 
  STAR 683 0.035 92.17% 
  ORB 193 0.049 93.69% 
  SURF 638 0.055 92.33% 
  AGAST 875 0.079 91.43% 

ORB FAST 891 0.061 93.49% 
  STAR 720 0.064 94.74% 
  SURF 885 0.040 91.33% 
  ORB 471 0.038 94.20% 
  AGAST 885 0.046 93.45% 

BRISK FAST 896 0.138 90.69% 
  STAR 702 0.103 92.37% 
  ORB 388 0.048 93.72% 
  SURF 852 0.068 94.98% 
  AGAST 897 0.113 91.16% 

BRIEF FAST 896 0.056 93.72% 
  STAR 722 0.049 95.00% 
  ORB 482 0.038 96.40% 
  SURF 938 0.040 96.40% 
  AGAST 894 0.065 93.91% 

ZEON FAST 870 0.155 88.59% 
  STAR 681 0.086 90.44% 
  ORB 348 0.054 93.30% 
  SURF 632 0.101 73.32% 
  AGAST 590 0.063 60.20% 

SURF FAST 845 0.187 84.50% 
  STAR 658 0.120 86.58% 

  ORB 463 0.062 92.60% 
  AGAST 408 0.162 40.80% 

 

 Based on above result, a complete evaluation is conducted for 
front-end vision SLAM system where, we can conclude that if we 
seek for speed and low processing time, BRIEF-FAST is the best 
descriptor-detector combination to be selected. However, if the 
priority is given to higher accuracy, the BRIEF-ORB, and BRIEF-
SURF is those that must be chosen. Also, as it is seen, the FAST 
algorithm is better in terms of processing time and number of 
detected features than all actual known detectors. Therefore, any 
evaluation will depend strongly on the associated descriptor and 
matching process. However, from another side, ORB descriptor, is 
the best descriptor in term of accuracy.  

 Additionally, the evaluation of the bio-inspired FREAK 
descriptor has proven that it has the lowest matching time 
performance, beside good results on both accuracy and processing 
time.  

 To narrow down and make the choice of the most adapted 
combination for automotive application, we must look for a 
combination that fulfil both the minimum processing time and the 
highest accuracy, which will leave us with 3 extractor 
combinations as shown below in Table 5. The remaining 
combination will be ignored, because they do not fulfill 
requirement and could lead to incorrect final mapping results.  

 This choice can be justified by the fact that any automotive 
vision SLAM application must be real time. Therefore, a low 
processing time has the advantage, but it does not mean that the 
precision can be high. The best combinations are the ones shown 
in the Table 5. 

Table 5: High score combination leading to a compromise between the 
maximum accuracy percentage and the minimum processing time 

Extractor 

Total detection 
and 

description 
processing 
time per 

feature (ms) 

 

Matching 
time 
(ms) 

Total 
Processing 
time (ms) 

% Acc 

BRIEF-FAST 0.04 0.056 0.096 93.72% 

ORB-FAST 0.05 0.061 0.111 93.49% 

FREAK-STAR 0.09 0.035 0.125 92.17% 

 
 In a similar way to BRISK and BRIEF, FREAK uses also a 
binary string, but it has an optimized false matching algorithm 
which reduces the processing time during matching process, giving 
the advantage to be used for real time V-SLAM applications.  

The second evaluation step is to apply the selected extractors to a 
full V-SLAM algorithm to evaluate the behavior considering back-
end constraints (localization and mapping kernel). 

4.2. Back-End Evaluation 

For an objective evaluation, we implemented an algorithm 
based on ORB-SLAM2 and modify it to incorporate additional 
detectors and descriptors functional blocks. We used the already 
prepared class from OpenCV. 
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The matching method is based on the Brut force matcher which 
uses Hamming method to calculate distance. The intended stereo-
vision system has three main parallel threads with an additional 
loop executed also in a separate thread.  

The used datasets are an indoor sequence from Tum, fr2/desk 
[23] running at 10 FPS, and an outdoor sequence from the well-
known KITTI dataset [24] running at 30 FPS. The reason behind 
this choice is because these datasets has a denser co-visibility 
graph and therefore the local map contains more key frames and 
points to evaluate object reconstruction and SLAM/odometry 
methods under different texture, illumination and structure 
conditions. The sequence is schematized in Figure 4. The obtained 
results are given by Figure 5. 

 
Figure 4: V-SLAM threads executed in parallel 

where:  

• Tracking: a separate thread where every frame is 
localized by extracting feature and matching it to the local 
map. A local Mapping loop is then applied. 

• Local Mapping: minimize the reprojection error, 
optimize and manage the local map, by performing a 
bundle adjustment (BA) loop. 

• Loop Closing: it enhances the pose-graph by correcting 
the accumulated drift, within large loops. 

 
To allow the system to continue loop detection and creating the 

map, a fourth thread of Full bundle adjustment, also called Full BA 
[25] is launched when the optimization process is aborted, and loop 
closing is finished.   
 
   Once the full BA finishes, the updated subset of key frames and 
points are merge and optimized, with the non-updated key frames 
and points that where inserted while the optimization was running. 
This is done by propagating the correction of updated key frames.  

 Indoor mapping results are shown in Figure 6 with the resulting 
path compared to the ground truth, that is provided initially with 
the dataset. Camera calibration data are also provided by [23]. 

 
(a) 

 
(b) 

 
(c) 

Figure 5: Dense point reconstruction from estimated keyframe poses: (a), sensor 
(camera) pose, (b) maps in TUM, fr2/desk. (c), KITTI_00 dataset tracked by the 
visual odometry system indicated in blue. 
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Figure 6: Pose-graph corresponding to indoor dataset, from up to down, for BRIEF-
FAST, ORB-FAST, and FRAEK-STAR with comparison to ground-truth for TUM, 
fr2/desk 

Bellow, the Figure 7 shows the evaluation using the outdoor 
dataset where the resulting path is compared to the ground truth 
given by [24]. 

 

 

      
Figure 7: Pose-graph corresponding to outdoor dataset for BRIEF-FAST, ORB-
FAST and FRAEK-STAR from up to down with comparison to ground-truth for 
KITTI dataset 00. 

To compare both reconstructions, we used both metrics: the 
absolute trajectory error (ATE) and relative pose error (RPE) since 
they directly measure the difference between the ground-truth and 
the generated trajectory when using visual SLAM algorithms. 

The estimated poses are associated to ground truth poses using 
the timestamps, then aligned using singular value decomposition. 
Finally, the difference between each pair of poses is computed. The 
output value is the mean, median, and the standard deviation of 
these differences, the RPE calculate the rotational errors. Results 
are given in Table 5 and Table 6 bellow. 

Table 6: Translational and rotational errors calculated based on relative pose 
error (RPE) and absolute trajectory error ATE for 10000 pose pairs for TUM, 

fr2/desk indoor dataset. 

FPS = 10    FREAK-
STAR  

ORB-
FAST 

BRISK-
FAST 

Translational Error 
(m) 

RMSE 0.050 0.044 0.429 
Mean 0.045 0.028 0.027 

Median 0.047 0.017 0.017 
STD 0.021 0.034 0.033 
Min 0 0 0 
Max 0.103 0.148 0.143 

Rotational Error 
(deg) 

RMSE 9.85 3.73 3.618 
Mean 3.52 1.5 1.51 

Median 0.014 0.011 0.010 
STD 9.206 3.394 3.285 
Min 0 0 0 
Max 35.629 18.801 18.223 

 

Table 7: Translational and rotational errors calculated based on relative pose 
error (RPE) and absolute trajectory error ATE for KITTI-00 outdoor dataset. 

FPS = 30    FREAK-
STAR 

ORB-
FAST 

BRISK-
FAST 

Translational Error 
(m) 

RMSE 8.623 7.914 6.707 
Mean 8.364 7.680 6.510 

Median 7.223 6.633 5.633 
STD 2.096 1.908 1.616 
Min 0.000 0.000 0.000 
Max 10.212 9.377 7.963 

Rotational Error (deg) 

RMSE 0.538 0.505 0.429 
Mean 0.294 0.278 0.250 

Median 0.264 0.250 0.227 
STD 0.451 0.422 0.349 
Min 0 0 0 
Max 14.079 12.562 10.161 

Indoor dataset is considered as an environment with low 
lighting variations, where a robot is moving in a low speed. 
Additionally, the camera is held by a human, so the rotational 
effects are also much more important and unexpected. While the 
outdoor dataset is an environment that presents better other 
constraints like high speed, lighting changes and lower camera 
rotation, because it is fixed in the same position during the vehicle 
motion.  

Considering above results, it is crystal clear that BRISK-
FAST introduces the minimum rotational and translational error. 
Hence it has a better performance in term of trajectory precision in 
both shorter and longer distances. 

From the other hand, FREAK-STAR extractor performance is 
acceptable for short distances and in environment with low 
variations, since it has the minimum standard deviation with 
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lowest maximum translational error, but the rotation can be 
considered as a weakness compared to the ORB-FAST and 
BRISK-FAST extractors. 

To summarize, even if all above three methods results are very 
close to each other, related to timing performance, a bio-inspired 
extractor based on FREAK has a low complexity since it uses a 
binary string like BRISK and BRIEF. It has an optimized matching 
algorithm reducing processing time. It is suitable to be 
implemented on a GPU or FPGA due to the number of threads that 
could be executed in parallel. For these reasons a parallel 
implementation will give the advantage to the bio-inspired 
algorithm and make it the more suitable for a real time Visual 
SLAM application.  

5. Discussion and Conclusion   

FAST is still till today the most adjusted feature detector 
despite of its known drawbacks. The reason behind this statement 
is that, as per above results, the other descriptors were 
outperformed in terms of processing time and the number of 
detected features. Hence, due to this fact any selection of a 
descriptor merged with FAST will lead to the minimum detection 
time. However, this descriptor used in a SLAM application must 
run together with a descriptor and a matching process, which is 
affecting the global timing performance, as also demonstrated in 
this paper. 

The matching process is a task that must be considered when 
selecting the combination of detector/descriptor, since the 
algorithm could lose more time during this step especially when 
the dataset has much more Key-points that need to be matched. 
This is clearly shown during experiments done in the current work, 
where pros and cons of every detector/descriptor combination are 
analyzed.  

Additionally, a proof of consistency, accuracy and speed is 
made in this study with regards to the bio-inspired extractors, that 
still need to be improved to have lower rotational and translational 
error and the processing time. A new descriptor called HOOFR [20] 
try to improve theses weaknesses and an evaluation of this 
descriptor combined with different detectors in a full SLAM 
system could be achieved as a perspective with a parallel 
implementation on a heterogeneous architecture. This could be a 
solution leading to promising results. 
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